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ABSTRACT 

A set of q responses, y=( y1, y2, ....., yq)T, is related to a set of p explanatory variables, 

x=(x1, x2, ...., xp)T, through the classical linear model, yT=a+xTB+eT. The parameters, a and 

B, are estimated during calibration using a training set. The fitted calibration model that follows is 

then used repeatedly on a number of new observations where y is observed and x is to be inferred. 

This procedure is often referred to as prediction (or inverse prediction). 

The prediction procedure can be viewed as parameter estimation in errors-in-variables 

regression (see Thomas 1991). By using the errors-in-variables connection and assuming normally 

distributed measurement errors, the maximum likelihood estimates of the new x’s can be obtained 

either individually or jointly. The limiting (q to infinity) normal distribution of the maximum likelihood 

estimates of the new x’s, obtained jointly, can be used to construct approximate simultaneous 

confidence regions for the new x’s. In situations where the new observations are numerous and well 

dispersed from the center of the training set, the uncertainty in a and B is substantial, and the 

specificity of the responses is poor, joint estimation can improve significantly on individual 

estimation, which is the traditional approach. 



1. INTRODUCTION 

Recently, calibration involving a multidimensional response has received significant 

attention (e.g., see Brown 1982, and Na!a 1985). Osborne’s (1991) recent review of calibration 

includes discussion of the wide variety of approaches to calibration involving a multidimensional 

response. Multivariate calibration is used in a number of applications, often in analytical 

chemistry. Many of these applications involve a blending of computer technology and specialized 

instrumentation (e.g., spectrometers) that result in response variables of a very high dimension. 

The discussion presented here is particularly relevant for this situation. Martens and Naee (1989) 

and references therein provide a number of examples with a high-dimensional response variable. 

Because of the cost of developing a calibration model, a single fitted calibration model is 

often used repeatedly on a number of new observations (multiple-use calibration) to predict some 

characteristic of interest. For example, in analytical chemistry a calibration model is often 

constructed to predict some characteristic (e.g., chemical concentration) in a batch or stream 

comprising a number of new specimens (observations). Within the batch (or block within a 

stream), specimens are often prepared together. After the specimens are prepared, they are 

subjected to measurement by the appropriate analytical instrument (e.g., spectrometer). Prediction 

follows the acquisition of the instrumental measurements. 

The purpose of this article is to demonstrate the potential advantage of using the responses 

of the new observations jointly for prediction. This differs from the traditional approach where 

prediction of the characteristic of interest for an individual new observation involves only the 

multivariate response associated with that single new observation. The development of the joint 

prediction approach follows from Thomas (1991) where prediction was developed as an estimation 

problem in errors-in-variables regression. Maximum likelihood estimation (assuming normally 

distributed errors in the responses) was proposed as an alternative to least-squares estimation 

because of the consistency of the maximum likelihood estimator (MLE) with respect to the number 

of relevant response variables. In this article, the underlying errors-in-variables model is used to 

modify the MLE to include information inherent in the responses from all new observations. 

Calibration consists of two distinct steps; calibration and prediction. In the case of 

multivariate linear calibration (considered exclusively here), the calibration step consists of 

estimating a = (al, a2, . . . . as) and B = (bl, b2, . . ., bq) in the model 

Y = X+ B+ + E, where P.11 



Y’(YpYq,..., yu)’ is the n x q matrix of responses, 

+= :, ; * - * * in = 
I 

is a n x (p+l) matrix of constants, and 
.- -. 

B+= 
al %. . .-as 

bl $ . - - - bq 1 is a (p+l) x q matrix of unknown parameters, 

Here, q is the number of response variables, n is the number of calibration samples, and p is the 

number of explanatory variables. Note that this model represents confrolled calibra2ion, as the xi 

are assumed to be fured (see Brown 1982). For notational simplicity it is assumed that the xi are 

centered, so that i$lxi = 0. 

Further, it will be assumed that the rows of the matrix of random errors, 

E=(q,%,...,%)T1 are multivariate normal with 1. E( ei)=O, 2. E( eief)=O for i # j, and 3. 

E(eie~)=a21q. More generally, we could allow E(eicf) a V, with V known, followed by the 

appropriate transformation of the rows of Y to achieve condition 3. In this article, it will be 

assumed that this transformation, if necessary, has been performed. In general, note that if V has a 

completely arbitrary structure, it may not be possible to obtain a proper estimate of 

E( eiec) =u* I9 since we often have n much smaller than q. However, in chemical applications 

involving optical methods, the ordered nature of the responses (embodied in a spectrum) can often 

give rise to a structured V involving only a few parameters (e.g., see Denham and Brown 1991 and 

Thomas 1991). Although in practice V is unlikely to be known, transformation of Y based on an 

estimate of V will approximately satisfy condition 3. This article does not address the consequences 

of uncertainty in the estimate of V. 

By using least-squares regression, an estimate of B+ is 
. 

ii+= 

[ 

il +. . -iq 1 _ 6, 4.. - * iiq -(xjx+)-‘x;y. 

The errors in estimating B+ are denoted by 

At=Bt-Bt= 
[ 

Yl 72 . . . . yq 
h1 $ _ - _ _ 6q 

1 

[1*21 

It follows that (yt, 6:)’ ‘fi Norma) ( 0, CT* ( XiXt)-l ). 



In the prediction phase, new samples are obtained where, for each sample, only the q- 

vector, y, is obeerved. The objective is to estimate the pvector, x, that underlies each of these new 

samples. Here, no distribution of the new x’s will be assumed. The parameter estimates, B 

obtained earlier in the calibration phase, are repeatedly used in the prediction phase. There are two 

sources of error when estimating the x’s for the new samples. One source is the error in the 

calibration, A . The other source is the measurement errors associated with the new y’s. The 

common calibration error (A ) introduces correlation among the errors in estimating the various 

new x’s. 

t’ 

t 
t 

A number of authors (e.g., see Scheffii 1973; Carroll, Spiegelman, and Sacks 1988; and 

Mee, Eberhardt, and Reeve 1991) have addressed the difficult problem of simultaneous inference in 

univariate calibration (q = p = 1). This article develops simultaneous inference in multivariate 

calibration by exploiting the errors-in-variables representation of the prediction phase outlined by 

Thomas (1991). When there are more response variables than explanatory variables (i.e. q > p), the 

overdetermined nature of the prediction phase makes inference in calibration with many variables a 

somewhat easier problem than the analogous problem in univariate calibration where prediction is 

completely determined. 

The remainder of this paper consists of the following. Section 2 formulates the prediction 

problem as an estimation problem in errors-in-variables regression. Sections 3 and 4 describe 

individual and joint maximum likelihood estimation of the new x’s. The limiting (q-oo) 

distributions of the individual and joint MLE’s are given. An asymptotic comparison of the two 

estimation methods is presented in Section 5. In Section 6, the two estimation procedures are 

compared using simulations. Section 7 contains a short conclusion. 

2. ERRORSIN-VARIABLES MODEL FOR ESTIMATING %’s 

During prediction, r new observations are obtained where only the q-vectors, yc), in 

Yo = (y(’), ~ ( ~ 1 ,  . . ., ~ ( ~ 1 )  = ( y?;) , yh) , . . ., Y?‘)~, are observed. The pvectors, xc), in X, = (x(l), 

x(~) ,  ..., x(~)), are to be estimated. The parameter estimates obtained earlier in the calibration 

phase, B , are used for this purpose. t 
The prediction of the r new observations can be parametrized in terms of a linear 

funcfional model (e.g., see Fuller 1987). The model is ut = b t h  + at 1 (or, zt = %-at 1 = b&), 

&t=bt+bt ,  i t=a t+Yt ,  and Y(t) = ( Y t l ,  Yt2, ..., Y t r ) = U t + e ( t ) ,  for t = 1, 2 ,..., q. The 

underlying linear functional relationship is et = b&. The observed values of the response 

9 



variablee, in Yo, contain the unobservable true values of the responses ( 3 ) a n d  measurement 

errors, e(,) = (etl, et2, . . ., etr) , which are assumed independent across the r new observations. Let 

2, = (Ztl, Zt2, . . ., Ztr) = st + e(,) - yt 1 be the observed value of st = (ztl, zt2, . . ., ztr) That is 
Z, = y(,) -4 1. Also, let c . - ( etj - 7t, 6t)T. From earlier assumptions, it can be shown that for 

futed j, ctj !!! Normal(0,C) for t = 1, 2 ,..., q, where C=a2R and 
t1- 

r 1 

= (XrX+)-' +diag(l, 0, 0, ..., 0). 
"11 O 

0 %  

n= 

na= 

"11 "7, - "77 

0 0 

T T ifi . . ., etr - rt,6, ) Normal( 0, Ea) for t = 1, 2,. . ., q, where 

0 

0 

% 

, and Rr7 = Var(-yt). 

Notice that the set of estimated model parameters {%, 5,) with associated errors {yt, Jt}  remain 

constant over all r new observations. This introduces correlation among the errors associated with 

maximum likelihood (and other) estimates of the r pvectors of X, We will consider estimation of 

the columns of X, by maximum likelihood both individually (one column at a time) and jointly. 

3. INDMDUAL MAXIMUM LIKELIHOOD ESTIMATION 

In many calibration applications, the columns of X, are estimated individually. For 

example, in analytical chemistry, it is common practice to estimate the chemical characteristic of 

interest for a new sample without regard to the responses of the other new samples. This practice is 

prevalent despite the fact that instrumental measurements for new samples are often acquired in a 

batch. 

Given the knowledge of the distribution of ctj, the individual MLE of xc) (and B) can be 

obtained by maximizing the log likelihood, 

- (n/2) -log12na291- (2a2)-l 
q 

t = l  
(( Ztj, L l )  - ( ztj, b l ) )  Q- l ( (  Ztj, 6;)  - ( ztj, b l ) )  T, 

4 



with respect to x6) and B (e.g., see Fuller 1987). Recall that z is defined explicitly by the 

underlying linear functional relationship, ztj = bTx6). If SZ is nonsingular and q 2 p, the individual 
tj 

MLE of x6) is 

#I=( MB-X%)-'Mg], where [ 3 4  
9 9 

t=l t= l  
Mn=q-' C Lt Lt, M#] = q-' 6, Ztj , and 1 is the smallest root of I M6)- A 0  I=O. 

Note that Brown and Sundberg (1987) give an approach'for obtaining the MLE of x6) 

when E(eie;) is arbitrary and unknown. However, the development of the MLE when E(eie;) is 

completely arbitrary and unknown requires that the number of calibration samples (n) exceeds 

q + p. This condition is not likely to be met in situations in which q is very large (perhaps 1000 or 

more). If €(ei.?) is assumed known within a scale constant, then the approach given by Brown 

and Sundberg (1987) will result in the expression given in equation (3.1). 
9 

The purpose of ;\% is to shrink M n  towards 1 n ~ ~ z 9 - l  btb:. By assuming that 

b = lim q- bt b: is positive definite, &: strongly consistent with 
q- t=l  q- t=l  

respect to q (see Amemiya and Fuller 1984). Note that in many chemical applications p is 

relatively small ( 5  5), while q can be very large (sometimes >1000). Thus, the limiting 

distribution of Z6) with respect to q (to be discussed) has particular relevance. 

9 l 9  - 
bt and iE,=lim q-l 

Coincidentally, the maximum likelihood estimates of b t y  modified by the jth new 

(See e.g., Fuller 1987, page 125). Note that unique estimates of b; are obtained for each new 

sample. Also, note that because of the error structure we are not able to obtain separate estimates 

of at and y from itj. tJ 

In general, with arbitrary p, E, and q, the exact distribution of $1 is unknown. 

However, with the earlier assumptions on b and iiiB, it can be shown that as q + m ,  

r;j(Zb)-#)) 5 Normal(O,I), where 
1 

5 



1 4=( ~,-X~)~)Q( l , - ~ ~ ) ~ ) ~ ,  $=-f&x", and rij is an upper triangular matrix, such that 

( I ' ~ ~ ) T r ~ ~ = I ' ~ l .  This expression can be used as the basis for deriving a confidence region for an 

individual xc) (see Thomas 1991). Note that the assumption about 5 implies the need for 

reZeuani reaponsea (i.e. bt # 0) and specific responses (i.e. the rows of B = (bl, bz, ..., bq) are 

different). 

1 1 

In practice, neither u2, xc), or mn, which are elements of r-, will be known. An estimator 

of rj, pj, following that given by Fuller (1987), page 130, and Thomas (1991) can be obtained by 

replacing u2, xG), or mn in the expression for rj with appropriate estimates. An estimate of u2 is 

k2 =((n+l)~(q-p)-n)~l.{(n-(q-p-l))&~+(q-p)&~}, where 

J 

n 9  
6: = (n - (q - p - 1))-l (Yit - Xi& - is an estimate of i2 obtained from the 

i= l  t=l 

calibration phase (Yit is the itth element of Y and Xi is the ith row of X), and 
9 

&2 - - ((q - p) - ( 1, -feIT)Q( 1, -Zc)T)T)-l - LlZc))2 is an estimate of c2 obtained from 
t=l 

the prediction phase. An appropriate estimate of xc) is fc). An estimate of -2 is 

where Ec)=(O,Ip)T-(l,-ZG)T)T[(l,- fc)T)~(l,-~c)T]-l(l,- #IT)&, & consists of 

columns 2 through p+l  of and 2=k2Q. See Thomas (1991) for discussion concerning where the 

normal approximation using Pj is accurate in this calibration context. 

$i= fi6lT( Me) - 2) HG),  

The joint distribution of the columns of = ($1, $1,. . ., e)) is unknown. However, it 

is straightforward to derive the joint distribution of the & in the limit as q+oo (or a2+0). The 
Appendix provides this limiting distribution. 

4. JOINT MAXIMUM LIKELIHOOD ESTIMATION 

When the estimated parameters of a multivariate calibration model are to be used 

repeatedly, responses from a batch of new samples (in Yo) can be used to estimate jointly the 

columns of X, by maximum likelihood. This differs from the traditional approach where the 

estimation of a single column of X, involves only the related column of Yo and the estimated 

model parameters. As we shall see in Section 5,  joint estimation could provide some advantages 

over individual estimation, especially under conditions where individual maximum likelihood 

estimation Seems to perform poorly relative to least squares (see Thomas 1991). 

Given the knowledge of the distribution of ct., the joint MLE of X, (and B) can be 

6 



obtained by maximizing the log likelihood, 

- (n/2) * log1 2 r u 2 ~ a l -  

with respect to X,, and B. Amemiya and Fuller (1984) give the join2 MLE of X, denoted here by 

&,, Let p1 2 p2 2 . . . I  pp+r be the eigenvalues of QiSM,ni3 and let T = (Tl, T2) be the matrix 

of corresponding orthonormal eigenvectors such that ni5 M,Qi3T2 = T2 Ft, 

9 

(( zt, iz) - (St ,  bf)) (( ztc h l )  - (gtc bf)) T, 
t =. 1 

1 1 

1 1 

1 where M,=q- l 9  CS,S;, St=( Ztl, Zt2, .. ., Ztr,&t)=, R =  diag(p,+,, P , + ~ ,  . . ., pp+J, and t2iS is 

1 t=l  

the matrix square root of nil. Further, let C = ni5T2. Then, 

% = ($), #I, ..., ZW)) = - c pr, c - 1 ,  [ 4 4  

where C, consists of the first r rows of C, while C,,, consists of the final p rows of C. Note that if - 4 9 
b = lim q-l btbf is positive definite, % exhibits strong consistency 

with respect to q (see Amemiya and Fuller 1984). 

bt and iiin=lim q-' 
9- t=l  q- t=l 

In general, the joint distribution of j(0 is unknown. With the assumptions given €or 

consistency, Amemiya and Fuller (1984) and Fuller (1987), page 305, gave the distribution of & in 

the limit as q+m. Since by prior assumptions Ca is known to within a proportionality constant, 

T-gvec(% -&)+ Normal(O,I), as q + m ,  where e 1 

In practice, neither c2, h, or m22, which are elements of T, will be known. An estimator 

of T, f can be obtained by replacing n2, h, or m22 in the expression for T with appropriate 

estimates. An estimate of u2 derived from both the calibration and prediction phases is 

&2 = ((n + r) (q - p) - n)-' - { (n (q - p - 1))&2 + r - (q - p) &;}, where 82 is from Section 3, and 

&; = ((q - p) - r ) - '  c(Zt - 6;$)4-'(Zt - bi&)T, where 4 = (\, - %)iIa(\, - %)T (see 

Fuller 1987, page 294) . An appropriate estimate of X, is $. To estimate mn, Fuller (1987, page 

9 

t=l  

- 
304) recommends using $22 = 

and E, = & 2 iIX 

where H = 2; 1( k, I$[( w, I J Q (  w, $)T]-l, 

7 



Approximate individual and joint confidence regions can easily be developed for various 

subsets of the p x r elements of X, For instance, an approximate (1 - a) confidence region for the 

first row of X, is given by 

TS is a subset of f containing only those elements that are in rows 1, p + 1, 2p + 1, ..., 
(r - l )p  + 1, and columns 1, p + 1, 2p + 1,. . ., (r - 1)p + 1, of f. This particular subset of X, relates 

to the first of the p underlying explanatory variables for all r samples. 

Coincidentally (see Fuller 1987), the maximum likelihood estimate of 

t = 1,2,. . ., q, modified by the information supplied by all of the new samples is 

The joint MLE of bt, 6,, incorporates information from both the n calibration samples and r new 

samples. When r = 1 (Le., individual maximum likelihood estimation) it = Lll) won't generally 

improve much on b,. For large r, it can differ significantly from the various Lf)  and be a much 

better estimator of bt (see Section 6). This is indicative of the potential improvement of joint 

maximum likelihood estimation over individual maximum likelihood estimation. 

5. ASYMPTOTIC COMPARISON OF &, AND &, 
The purpose of this section is to  identify situations where % and &, can differ 

significantly. For this analysis, we will assume that the distributions of and &, are well 

approximated by the asymptotic results given earlier. In particular, the matrices, rj and Tj,j, 
which describe the asymptotic covariance structure among, the elements of Zc) and $), 

respectively, will be used here. 

The increase in asymptotic variance of the individual MLE when compared to that of the 

joint MLE can be represented by the non-negative matrix 
Qj = rj - Tj, = u4 m&( 1 ( C& 4 - 4 4T) - 8 $) III&. 
Under appropriate conditions, as r -P 00, e+ 0 so that Qj + <mil2( C& l/lj - Aj A;) rail2. For 

purposes of simplification, assume xc) = 0, which implies that A. AT = 0. The difference, Qj, could 

ratio, u2m& is poor (large), 2. the number of calibration samples is relatively small, implying 

that $2 has relatively large elements, and 3. the specificity of the response variables is poor (Le., 

J J  
be of practical significance if u2%rni2 1 is large. This can be the case if: 1. the noise-bsignal 

8 



% is ill-conditioned). If the number of new samples, r, is large and these three conditions are 

met, use of the joint MLE can offer a significant advantage. 

To  highlight the potential differences between joint and individual maximum likelihood 

estimation, we will consider the asymptotic performances (q+m) of individual and joint maximum 

likelihood estimation in a spectroscopic context. Consider a hypothetical chemical system where 

two unconstrained components, when at unit concentrations, exhibit the absorbance spectra 

illustrated in Figure 1. The Gaussian spectral shapes portrayed in Figure 1 have means of 200 and 

400 (arbitrary units), and a common standard deviation of 100. The response vector (y) associated 

with samples containing both of these two components is assumed to  follow Beer's law. That is, 

the t + (xl, x2)(blt, b2t)T + et, where x1 and 

x2 are the concentrations of the two chemical components and (el, e2,. . ., eq)T are uncorrelated 

normally distributed measurement errors. Here the elements of the intercept vector, (al, 9, ..., 
aq), are identically zero, but assumed to be unknown during calibration. The particular values of 

bt=( blt, b2t)T depend on q. For a given value of q, the set of frequencies used is { 0, Aq, 

2 Aq,. . ., (q-1) Aq}, where A = 600 Figure 2 illustrates the values of {bt} when q=20. 

th  element of the q-dimensional spectrum is yt = 

9 q-1' 

As q increases, the separation between adjoining frequencies decreases. As q+m, {bt} 
It can be shown that lirn m22= converge to the spectral shapes portrayed in Figure 1. 

q-+m lim q- l q  C b t b t  = 
q-00 t = l  

cP( 4 a) - cP( -2 a) e-'(o( 3 a) - O( -3 &)} .0469 .0173 

e-'+( 3 fi) - O( -3 fi)} O( 4 f i )  -cP(-2 fi) 1 ;[ .On3 .0469 1' 
Conditions in which the spectra of the two chemical components are more overlapped were also 

considered (see Figure 3). In this case, the response variables have less specificity (the spectral 

shapes have means of 250 and 350, and a common standard deviation of loo), and lim mn = 
q-00 

cP( 3.5 a) -a( -2.5 a) 3 &) - O( -3 a)} ] N- [ .0470 .0366 ] 
3 4) - @( -3 fi)} @( 3.5 &) - @( -2.5 a) .0366 .0470 

Two variations of X (columns 2 and 3 are assumed to be centered) were considered. In the 

first variation of X (denoted by X ), which relates to the case where relatively few calibration 

samples are used, (X' X )-' =diag(.2, 1, 1). In the second variation of X (denoted by X ), 

t 
t tl 

tl tl t t2 
9 



which relates to the case where relatively many calibration samples are used, 

(XT X )-' = diag(.02, .l, .1). Two variations of u2were also considered (u2 E {.001, .Ol}). In 

total, the eight conditions defined by all combinations of the three twelevel factors (spectral 

overlap, X and u2 ) were studied. The asymptotic performances of individual and joint maximum 

likelihood estimation are compared for five points in the plane, x(') E ((0, 0), (-.6, -.6), (-.6, .6), 

(.6, -.6), (-6, .6)}, which cover the assumed design space spanned by the centered values of X 

t2 t2 

T t' 

t 
The diagonal elements of rl (normalized by q) were computed for the eight conditions 

described above by using the limiting expressions for m22. Similarly, the diagonal elements of Tl, 

were computed based on various assumptions. First to provide a benchmark, T,,, was computed 

assuming that the model parameters, {at, bt}, are known (Le., = 0). In this case, E6) = Z6), 

and rl = TI, = v, w h e r e v  = block diag Tm& . This approximates the performance of the 

maximum likelihood estimators when n (the number of calibration samples) is very large. The 

second variation of T,,,, denoted by T', relates to the case where the r new observations are 

numerous and sufficiently dispersed from the origin (i.e., 8 NN 0). The asymptotic covariance of E(') 

P2 '1 

in this situation (assuming 8 = 0) is T' = 2 1  m&. This reflects the best possible performance of 

the joint maximum likelihood estimator in the general case when l& # 0. 

Other variations of T,,, considered here assume that there are r = 20 new observations to  

predict. In many applications in analytical chemistry, the number of new observations to predict 

within a batch could easily exceed this number. Three cases are considered in order to provide some 

insight with regard to the effect of the range of the values in % on performance. In the first case, 

each element of columns 2-20 of X, was obtained by independently sampling the uniform 

distribution on [-.9, .9], giving rise to T%. In the second case, columns 2-20 of IC,, were obtained 

by sampling U[-.3, .3], giving rise to Tlb. In the third case, columns 2-20 of X, were obtained by 

sampling U[-.9, .9] for the first row, and sampling U[-.3, .3] for the second row, giving rise to Tk. 

The asymptotic efficiencies of the individual and joint maximum likelihood estimators 

(with various assumptions on %) relative to the performance achieved when all model parameters 

are known (i.e., + = 0) are given in Tables 1-5. For each estimator, the best performance is 

achieved when x(') = (0, O)= where, in fact, T' = v. Naturally, uncertainty in the model 

parameters causes poorer performance when x(l) is distant from the center of the design space (e.g., 

x ( l )=  (f.6, &.6)T). This can be an important issue when the uncertainty in the model 

parameters is relatively large (i.e., X+ = X+ ). Also, apart from effect on the distance of from 

the center of design space, the asymptotic performances of these estimators depend somewhat on 
1 

10 



the orientation of x(') due to the overlap of the spectral features. Asymptotic performance is 

slightly better in some casea when d') = (a, - a)T versus when dl) = (a, a)T. 

From T a b l a  1-5, note the hierarchy, rl (i, i) 2 ?(rbc) (i, i) 2 T' (i, i), for each value of =('I 
for the eight conditions considered. This indicates the gains in asymptotic efficiency that are 

possible by using joint rather than individual maximum likelihood estimation when r is moderate 

and very large. When the response error variance, u , is small (here u2 = .001), there is little 

difference between individual and joint maximum likelihood estimation. However, as presented in 

Tables 1-5, the joint maximum likelihood estimator can offer significant increases in efficiency 

when the response error variance is not trivial with respect to the underlying signal (here u2 = .Ol), 
especially when the response variables have poor specificity (here spectral features have severe 

2 

overlap) and relatively few calibration samples are used (here X = X ). This is precisely the 

condition where individual maximum likelihood estimation exhibits poor relative performance with 

rapect to the classical least squares estimator (see Thomas 1991). 

t tl 

The asymptotic efficiency of depends to some degree on the values in the other 

columns in %. When the values are relatively highly dispersed from (0, O)T, the asymptotic 

efficiency of is improved when compared to the case when values are relatively poorly 

dispersed (compare Tables 2 and 3). This difference is most notable when u2 is large, overlap is 

high, and the number of calibration samples is small. Note that the asymptotic performance of i(') 
given in Table 2 can be only marginally improved with additional new samples as A.R.E (T%(i, i)) 

is not much smaller than A.R.E.(T'(i, i)). The asymptotic performance of $1, summarized in 

Table 4, is intermediate when compared to Table 2 (high dispersion) and Table 3 (low dispersion). 

Although, the second row of X, is less dispersed than the first row of &, A.R.E(T"(2, 2)) is very 

close to the A.R.E. (T*(1, 1)). 

6. SIMULATION COMPARISON OF AND &, 

The previous analysis relates to the asymptotic case where q+w. To get a feel for the 

difference between & and &, with finite q (chosen here to be loo), a small simulation experiment 

was performed. We consider two conditions based on the setup described in the previous section 

where 1 and &, are expected to perform differently (u2 = .01, X = X , with both low and high 

overlap). 
t tl 

For each of the two conditions studied, two values of x(l) were considered; x(') = (0, O)= 

1000 independent simulations were performed in each case. For each and x(') = ( .6 ,  .6)T. 



simulation, the individual and joint MLE's involving was 

estimated by least-squares (Le. i(l) = M A  Mf"). In the case of the joint MLE, a single realization 

of columns 2-20 of & was obtained by independently sampling the uniform distribution on [-.9, .9] 

38 times. These simulations were carried out on an IBM-compatible personal computer using 

MATLAB@ (Moler, et al., 1991). 

were obtained. In addition, 

Figures 4 and 5 summarize the distributions of the first elements of three estimators when 

#) = (0, O)T and = (.6, .6)T, respectively. Note that the distributions of the second elements 

of the three estimators are similar to the distributions of the first element because of symmetry and 

are not displayed. When the spectral overlap is relatively high, the joint MLE offers a significant 

reduction in variability when compared to the individual MLE; whereas when the spectral overlap 

is relatively low, the joint MLE offers a more modest reduction in variability. Significantly, wild 

values that occasionally appeared in the individual MLE when the overlap was high (maximum 

and/or minimum values of the first element of dl) were offscale in Figures 4 and 5 )  did not appear 

when using the joint MLE. For example, the maximum value of the first element of it(') exceeded 

3.8, when x(l) = (.6, .6)' and the overlap was relatively high. 

It is also interesting to compare the performance of the simpler least-squares estimator 

with the two MLE's for the cases considered. In these cases, the least-squares estimator, d'), has 

smaller dispersion than the two MLE's. However, when = (.6, .6)' the least-squares estimator 

exhibits significant shrinkage towards (0, 0)'. When = (0, O)T, the shrinkage towards (0, O)T 

causea no problem. 

These simulations indicate that the joint MLE is an improvement over the individual MLE 
by reducing dispersion while maintaining quasi-unbiasedness. When compared to the least-squares 

estimator, both MLE's offer relative unbiasedness while sacrificing dispersion. The bias associated 

with the least-squares estimator can be significant if the new x is far from the center of the x's in 

the training set. 

It is also informative to compare various estimates ofB that can arise during the 

calibration experiment (calibration and prediction). Here, for example, we will consider a single 

realization when q = 100, the overlap is relatively high (see Figure 3), g2 = .01, and X - X 

Columns 2-20 were obtained as described earlier in this section while dl) = (0, O)T. Figure 6 

portrays the estimate of B based only on the calibration phase for one realization of the simulation 

(see equation 1.2). Figure 7 portrays the analogous estimate of B based only on the calibration 

phase and y('), corresponding to equation 3.2. (individual MLE). Figure 8 portrays the analogous 

t - tl' 



estimate of B based on the calibration phase and all columna of Y,,, corresponding to equation 4.3 

(joint MLE). The estimator of B obtained by joint maximum likelihood estimation incorporates all 

available information from both the n calibration samples and r new samples. As illustrated in 

Figures 5, 6, and 7, the estimator of B obtained by using all columns of Yo can be much more 

precise than either of the other two estimators given. This advantage is present when is much 

larger than one. 

7. CONCLUSION 

When a classical multivariate calibration model is used repeatedly to predict some 

characteristic, maximum likelihood estimation involving the simultaneous use of responses from a 

batch of new samples can significantly improve prediction. This is especially true when the number 

of calibration samples is small, the response specificity is poor, and the new samples are numerous 

and well spread out. Furthermore, the limiting distribution of the joint maximum likelihood 

estimator, obtained directly from the errors-in-variables literature, can be used directly to develop 

approximate simultaneous confidence regions for X,  

The inherent batch nature of chemical assays makes joint estimation a potentially useful 

improvement in a number of calibration applications in analytical chemistry. The explicit nature of 

the causal model discussed in this paper makes it possible to take advantage of joint estimation. 

However, without an explicit model, as is the case of some of the popular methods in the 

chemometrics literature (e.g., partial least squares regression), it is probably more difficult to 

simultaneously incorporate the responses from a batch of new samples during prediction. 
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APPENDIX - DERIVATION OF TEE LIMITING DISTRIBUTION OF vec (&, - h) 
In derivation of the limiting distribution of Fuller (1987), page 129, provides 

an intermediate result that is used here. As a special case of this result, with R known to 

within a multiple, 

Z,, 
Q 

(i) - = m& q-' t=l C git + Op (q- '), where 

gjt = Ftvj t  --A 1 - v2 ), and vjt = 6) - 6 6). tlj J jt rt- t 'b 

To obtain the limiting distribution of vec ( &, - h), we first find that 

Let Q = vec (glt, g,, . . ., g,,,J. From previous assumptions, we know that the Q are i.i.d. 

random variables with E[gJ = 0. Therefore, using the central limit theorem we find that 

aa q+oo, I'-'ivec(G -%)+ N o m d ( O , I ) ,  where L 1 

r 1 

- 2 4  A;{ (e) + (*)}}1n2~, 4 1  where 4, =( 1, -$IT) R ( 1, 4 

$j =( 1, -$IT) R ( 1, -d)T)T, and A =( %$I). 

16 



Table 1- Comparison of the diagonal elements of ?) and@ for various values of (xl, x2). 

A.R.E.(T’(i, i)) = p(i, i)/T1(i, i); i = 1,2 

2 Xt Overlap 

.01 X High 

.001 Xtl High 

.01 X High 

.001 Xt2 High 

.01 x Low 

.001 x Low 

tl 

t2 

tl 
tl 

t2  

.01 xta Low 

.OOl x Low 

q p ( i ,  i) A.R.E. (T’(i, i)) A.R.E. (T’ ( i ,  i)) 

= (0, O)T = ( f .6, f .6)T 

.649 1 

.0649 1 

.552 1 

.0552 1 

.296 1 

,0296 1 

.252 1 

.0252 1 

.62 

.62 

.93 

.93 

.62 

.62 

.94 

.94 

Table 2- A.R.E. (Tz”(i, i)) = ?(i, i)/Tz”(i, i)  for various values of 

A.R.E.(T%(l, 1))= A.R.E.(T%(2, 2)) 

2 Xt Overlap 

(0, 0 s  (-.6, -.6)T or (.6, .6)T (-.6, .6)T or (.6, -.6)T 

.01 X High 

.001 Xtl High 

.01 X High 

.001 X High 

.01 x Low 

tl 

t2 

t2 

tl 
.001 Xtl Low 

.01 x Low 

.001 x Low 
t 2  

t2 

.92 

.99 

.96 

1 .oo 
.97 

1 .oo 
.98 

1.00 

.57 

.62 

.89 

.93 

.61 

.62 

.92 

.93 

.58 

.62 

.89 

.93 

.61 

.62 

.92 

.93 
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Table 3- A.R.E. (Tzb(i, i)) = ?(i, i)/T2b(i, i) for various values of #). 

A.R.E.(T2b(l, 1)) = A.R.E.(Yzb(2, 2)) 

2 X+ Overlap 

.01 5, High 

.001 Xtl High 

.01 X High 

.001 X High 

.01 x Low 

.001 x Low 

.01 x Low 

.001 x Low 

t2 
t2 
t l  
t l  
t2 

t2 

2 Xt Overlap 

J1) 

(0, OIT (-.6, -.6)T or (.6, .6)T 

.75 [.71] .47 (.45] .50 [.48] 

.97 [.97] .60 [.59] .61 [.60] 

.93 [.93] .87 [.87] .87 [.87] 

1.00 [1.00] .93 [.93] .93 [.93] 

.92 [.86] .58 [.55] .59 [.56] 

.99 [.98] .62 [.62] .62 [.62] 

.98 [.98] .92 [.91] .92 [.91] 

1.00 [1.00] .93 [.93] .93 [.93] 

(-.6, .6)T or (.6, -.6)T 

.01 X High 

.001 Xtl High 

.01 Xt2 High 

.001 X High 

.01 x Low 

.001 x Low 

.01 x Low 

.001 x Low 

t l  

t2 
t l  
t l  
tz 
tz 

X (1) 

(0, 0lT (-.6, -.6)T or (.6, .6)T (-.6, .6)T or (.6, -.6)T 

.65 

.95 

.92 

.99 

.85 

.99 

-98 

1.00 

.4 1 

.60 

.86 

.93 

.54 

.62 

.91 

.93 

.45 

.60 

.87 

.93 

.55 

.62 

.91 

.93 
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Table 5- A.R.E. (r, (i, i)) = ?(i, i ) p 1  (i, i) for various values of #). 

A.R.E.(~~(~, 1)) = A.R.E.(~,(Z, 2)) 

u2 Xt Overlap 

.01 X High 

.001 X High 

.01 X High 

.001 X High 

.01 x Low 

.001 x Low 

.01 x Low 

.001 x Low 

tl 
tl 
t2 

t2 

tl 

tl 
t2 

t2 

#) 

(0, (-.6, -.6)T or (.6, .6)T (-.6, .6)T or (4 -.6)T 

.53 

.92 

.92 

.99 

.78 

.97 

.97 

1 .oo 

.34 

.57 

.86 

.93 

.49 

.61 

.91 

.93 

-40 

.59 

.86 

, -93 

.52 

.61 

.91 

.93 
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Figure 1- Hypothetical Spectra When Components Are At 

Unit Concentration. The spectra of components 1 and 2 are 

represented by a dashed curve and a solid curve, respectively. 

The fi-equency index is given in arbitrary units from 0 to 600. 
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Figure 2- The Values of B When q=20. The elements of the 

first row of B are given by the ordinates of the A'S. The 

elements of the second row of B are the ordinates of the +'s. 
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Figure 3- Hypothetical Spectra With Severe Overlap. 
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Figure 4- Box Plots of the distributions of the three estimators 

of the first element of x(*)= (0, O ) = .  The order statistics 
indicated are the minimum, 10 th , 250th, median, 751St, 991St, 

and maximum. The simulation condition is indicated by the 

spectral overlap (OL). OL=L refers to the conditions of Figure 

1 (relatively low overlap), while OL=H refers to the conditions 

of Figure 3 (relatively high overlap). 
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Figore 6- Estimates of the first (A) and second (+) rows of B 
based only on the calibration phase. The spectra that defines 

the first (----) and second (-) rows of B are overlaid for 
. .  

comparison. 
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Figure 7- Estimates of the first (A) and second (+) rows of B 
based on individual. maximum likelihood estimation (see 

equation 3.2). 
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Figare 8- Estimates of the f ist  (A) and second (+) rows of B 
based on joint maximum likelihood estimation (see equation 

4.3). 
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